
Journal of Discrete Algorithms 9 (2011) 344–357
Contents lists available at ScienceDirect

Journal of Discrete Algorithms

www.elsevier.com/locate/jda

An O (n3/2
√

log(n)) algorithm for sorting by reciprocal translocations

Michal Ozery-Flato, Ron Shamir ∗

The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 8 April 2011

Keywords:
Translocations
Reversals
Genome rearrangements

We prove that sorting by reciprocal translocations can be done in O (n3/2
√

log(n)) for
an n-gene genome. Our algorithm is an adaptation of the algorithm of Tannier, Bergeron
and Sagot for sorting by reversals. This improves over the O (n3) algorithm for sorting by
reciprocal translocations given by Bergeron, Mixtacki and Stoye (2006) [4].

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we study the problem of sorting by reciprocal translocations (abbreviated SRT). Reciprocal translocations
exchange non-empty ends between two chromosomes. Given two multi-chromosomal genomes A and B , the problem of SRT
is to find a shortest sequence of reciprocal translocations that transforms A into B . SRT was first introduced by Kececioglu
and Ravi [11] and was given a polynomial time algorithm by Hannenhalli [6]. Bergeron, Mixtacki and Stoye [4] pointed to an
error in Hannenhalli’s proof of the reciprocal translocation distance formula and consequently in Hannenhalli’s algorithm.
They presented a new O (n3) algorithm, which to the best of our knowledge, is the only extant correct algorithm for
SRT.1

Reversals (or inversions) reverse the order and the direction of transcription of the genes in a segment inside a chromo-
some. Given two uni-chromosomal genomes π1 and π2, the problem of sorting by reversals (abbreviated SBR) is to find a
shortest sequence of reversals that transforms π1 into π2. This problem has been intensively studied [8,5,9,1,2,15]. Tannier,
Bergeron and Sagot [15] presented an elegant algorithm for SBR that can be implemented in O (n3/2

√
log(n)) using a clever

data structure by Kaplan and Verbin [10]. This is currently the fastest algorithm for SBR.
In this paper we prove that SRT can be solved in O (n3/2

√
log(n)) for an n-gene genome. Our algorithm for SRT is similar

to the algorithm by Tannier, Bergeron and Sagot [15] for SBR. The key idea is to recast translocations as reversals, and
then exploit the novel theoretical improvements in SBR theory to obtain faster SRT algorithms. (It should be noted that
Hannenhalli and Pevzner have already established and exploited the basic connection between translocations and reversals,
in the context of sorting a genome by reversals and translocations [7].) Our approach builds on generalizing the overlap
graph. Most studies of SBR to date relied explicitly or implicitly on the combinatorial structure of the overlap graph for
representing the relations between two permutations. Since translocations involve multiple chromosomes, we generalize
the notion of (uni-chromosomal) overlap graph to include chromosomal information, and show that the same conceptual
algorithmic framework developed for SBR applies to SRT, via this generalized overlap graph. While our final algorithm is
very similar to that of Tannier et al., the proofs had to be completely redone. Another contribution of this study is in

* Corresponding author.
E-mail address: rshamir@tau.ac.il (R. Shamir).

1 Li et al. [12] gave a linear time algorithm for computing the reciprocal translocation distance (without producing a shortest sequence). Wang et al. [16]
presented an O (n2) algorithm for SRT. However, the algorithms in [12,16] rely on an erroneous theorem of Hannenhalli and hence provide incorrect results
in certain cases.
1570-8667/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.jda.2011.04.003

http://dx.doi.org/10.1016/j.jda.2011.04.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jda
mailto:rshamir@tau.ac.il
http://dx.doi.org/10.1016/j.jda.2011.04.003

M. Ozery-Flato, R. Shamir / Journal of Discrete Algorithms 9 (2011) 344–357 345
showing that the general SRT problem can be reduced in linear time to a special case, and thus time complexity analysis
can be done for such special cases only.

The paper is organized as follows. The necessary preliminaries are given in Section 2. In Section 3 we give a linear time
reduction from SRT to a simpler restricted subproblem. In Section 4 we prove the main theorem and present the algorithm
for the restricted subproblem. In Section 5 we describe an O (n3/2

√
log(n)) implementation of the algorithm. A preliminary

version of this study was published in the proceedings of CPM 2006 [13].

2. Preliminaries

This section provides a basic background for the analysis of SRT. It follows to a large extent the nomenclature and
notation of [6,9,4]. In the model we consider, a genome is a set of chromosomes. A chromosome is a sequence of genes.
A gene is identified by a positive integer. All genes in the genome are distinct. When it appears in a genome, a gene is
assigned a sign of plus or minus. For example, the following genome consists of 8 genes in two chromosomes:

A1 = {
(1,−3,−2,4,−7,8), (6,5)

}
The reverse of a sequence of genes I = (x1, . . . , xl) is −I = (−xl, . . . ,−x1). A reversal reverses a segment of genes inside

a chromosome. Two chromosomes, X and Y , are identical if either X = Y or X = −Y . Therefore, flipping chromosome X
into −X does not affect the chromosome it represents. For example, the following are two equivalent representations of the
same genome

{
(1,−3,−2,4,−7,8), (6,5)

} ≡ {
(−8,7,−4,2,3,−1), (6,5)

}
Let X = (X1, X2) and Y = (Y1, Y2) be two chromosomes, where X1, X2, Y1, Y2 are sequences of genes. A translocation

cuts X into X1 and X2 and Y into Y1 and Y2 and exchanges segments between the chromosomes. It is called reciprocal if X1,
X2, Y1 and Y2 are all non-empty. There are two ways to perform a translocation on X and Y . A prefix–suffix translocation
switches X1 with Y2 resulting in:

(X1, X2), (Y1, Y2) ⇒ (−Y2, X2), (Y1,−X1)

A prefix–prefix translocation switches X1 with Y1 resulting in:

(X1, X2), (Y1, Y2) ⇒ (Y1, X2), (X1, Y2)

The following is an example of prefix–prefix and prefix–suffix translocations that cut the genome in the same place:

{
(1,−3,−2,4,−7,8), (6,5)

} ⇒ {
(6,−7,8), (1,−3,−2,4,5)

}
{
(1,−3,−2,4,−7,8), (6,5)

} ⇒ {
(−5,−7,8), (6,−4,2,3,−1)

}
Recall that chromosome flips do not affect the genome, but rather move between different representations of the same

genome. Thus we can mimic one type of translocation by a flip of one of the chromosomes followed by a translocation of
the other type.

For a chromosome X = (x1, . . . , xk) define Tails(X) = {x1,−xk}. Note that flipping X does not change Tails(X). For a
genome A define Tails(A) = ⋃

X∈A Tails(X). For example:

Tails(A1) = Tails
({

(1,−3,−2,4,−7,8), (6,5)
}) = {1,−8,6,−5}

Two genomes A′ and A′′ are co-tailed if Tails(A′) = Tails(A′′). In particular, two co-tailed genomes have the same number
of chromosomes (recall that all genes in a genome are unique). Note that if A′′ was obtained from A′ by performing a
reciprocal translocation then Tails(A′′) = Tails(A′). Therefore, SRT is defined only for genomes that are co-tailed. For the rest
of this paper the word “translocation” refers to a reciprocal translocation and we assume that the given genomes, A and B ,
are co-tailed.

2.1. The cycle graph

In this section we present the cycle graph of genomes A and B , which was first defined in [6]. Let N be the number of
chromosomes in A (equivalently, B). We shall always assume that both A and B contain the genes {1, . . . ,n}. The cycle graph
of A and B , denoted G(A, B), is an undirected graph defined as follows. The set of vertices is

⋃n
i=1{i0, i1}. The vertices i0

and i1 are called the two ends of gene i (think of them as the ends of a small arrow directed from i0 to i1). For every pair
of genes, i and j, where j immediately follows i in some chromosome of A (respectively, B) add a black (respectively, gray)
(undirected) edge

(i, j) ≡ (
out(i), in(j)

)

346 M. Ozery-Flato, R. Shamir / Journal of Discrete Algorithms 9 (2011) 344–357
Fig. 1. Auxiliary graphs for A2 = {(1,−2,3,−6,7,−11,10,−9,−8,12), (5,4)}, B2 = {(1, . . . ,4), (5, . . . ,12)}, πA2 = (1,−2,3,−6,7,−11,10,−9,−8,12,

5,4). (a) The cycle graph. Black edges are horizontal; gray edges are curved. (b) The overlap graph with chromosomes. The graph induced by the vertices
within the dashed rectangle is OV(A2,πA2), the same graph without the chromosome vertices. (c) The forest of internal components.

where

out(i) =
{

i1 if i has a positive sign in A (respectively, B)

i0 otherwise

and

in(j) =
{

j0 if j has a positive sign in A (respectively, B)

j1 otherwise

An example is given in Fig. 1(a). There are n − N black edges and n − N gray edges in G(A, B). Since genomes A and
B are co-tailed, every vertex in G(A, B) has degree 2 or 0, where vertices of degree 0 (isolated vertices) belong to Tails(A)

(equivalently, Tails(B)). Therefore, G(A, B) is uniquely decomposed into cycles with alternating gray and black edges.
In the following we assume, without loss of generality, that each chromosome of B is an increasing sequence of con-

secutive positive numbers. For example, B1 = {(1,2,3,4,5), (6,7,8)}. Thus every gray edge in G(A, B) is of the form
(out(i), in(i + 1)) ≡ (i1, (i + 1)0) ≡ (i, i + 1). As genomes B and A are co-tailed, once genome A is given, genome B is
fixed. Thus we can define G(A) ≡ G(A, B).

Let c(A) denote the number of cycles in G(A). Note that if A = B then c(A) = n − N is maximal. We denote by A · φ

the genome obtained after the translocation φ is applied to A. For any parameter ψ , let �ψ be the increase in ψ after
applying φ, i.e., �ψ = ψ(A · φ) − ψ(A). The following lemma describes how c is affected by a translocation.

Lemma 1. (See [11].) Let φ be a translocation. If φ cuts two black edges in different cycles then the two cycles are merged into one cycle
and �c = −1. If φ acts on black edges belonging two the same cycle then either the cycle is split into two cycles and �c = 1, or there
is no change in the number of cycles (i.e. �c = 0).

A translocation is proper if �c = 1 (i.e. one cycle splits into two). A gray edge (i, i + 1) is external if i and i + 1 belong
to two different chromosomes, otherwise it is internal. For example, in Fig. 1(a), (5,6) is external, while (11,12) is internal.
An adjacency is a cycle with two edges. Thus, every adjacency corresponds to a pair of genes i, i + 1, where either (i, i + 1)

or (−i + 1,−i) is contained in one of the chromosomes of A.

Observation 1. Every external edge (i, i + 1) defines a (proper) translocation that creates the adjacency (i, i + 1).

2.2. The overlap graph with chromosomes

The overlap graph of a signed permutation was introduced in [9]. In this section we present an extension of this graph
for genome A.

M. Ozery-Flato, R. Shamir / Journal of Discrete Algorithms 9 (2011) 344–357 347
A signed permutation π = (π1, . . . ,πn) is a permutation on the integers {1, . . . ,n}, where a sign of plus or minus is
assigned to each number. Let A be a genome with the set of genes {1, . . . ,n}. Let πA be an arbitrary concatenation of the
chromosomes in A, in arbitrary order and orientation. Then πA is a signed permutation of size n.

Place the vertices of G(A) along a straight line according to their order in πA . Now, every gray edge and every chromo-
some is associated with an interval of vertices in G(A). Two intervals overlap if their intersection is not empty but none
contains the other. The overlap graph with chromosomes of genome A w.r.t. πA , denoted OVCH(A,πA), is defined as follows.
The set of nodes is the set of chromosomes in A and gray edges in G(A). Two nodes are connected if their correspond-
ing intervals in G(A) overlap. An example is given in Fig. 1(b). In order to prevent confusion, we will refer to nodes that
correspond to chromosomes as “chromosomes” and reserve the word “vertex” for nodes that correspond to gray edges.

Let OV(A,πA) be the subgraph of OVCH(A,πA) induced by the set of nodes that correspond to gray edges (i.e., excluding
the chromosomes’ nodes). This graph is an extension of the overlap graph of a signed permutation defined in [9]. We shall
use the word “component” for a connected component of OV(A,πA). For example, in Fig. 1(b), OV(A2,πA2) contains six
components: {(8,9)}, {(1,2), (2,3)}, {(7,8), (11,12)}, {(9,10), (10,11)}, {(3,4)}, and {(5,6), (6,7)}.

A vertex in OVCH(A,πA) is external if its corresponding edge in G(A) is external, otherwise it is internal. For example, in
Fig. 1(b), the vertex (5,6) is external while the vertex (6,7) is internal. Obviously a vertex is external iff it is connected to
a chromosome.

A component is external if at least one of the vertices in it is external, otherwise it is internal. A component is trivial
if it is composed of one internal vertex, which corresponds to an adjacency. For example, in Fig. 1, {(8,9)} is a trivial
component, {(7,8), (11,12)} is an internal non-trivial component, and {(3,4)} is an external component. Note that if A = B
then all the components are trivial. As we shall see later, a genome without non-trivial internal components can be sorted
by a sequence of proper translocations. In case a genome does have non-trivial internal components, these components can
become external after some non-proper translocations are applied.

The permutation πA matches to every vertex v of OV(A,πA) an interval of genes, I(v) ⊂ πA . For example, in Fig. 1(b)
the vertex (7,8) is associated with the interval (7,−11,10,−9,−8). The interval associated with a component M ,
I(M) ⊂ πA , is the minimal interval of genes for which I(v) ⊂ I(M), for every vertex v ∈ M . For example, consider the
components of OV(A2,πA2), shown in Fig. 1(b). Then I({(7,8), (11,12)}) = (7,−11,10,−9,−8,12) and I({(5,6), (6,7)}) =
(−6,7,−11,10,−9,−8,12,5). Observe that the interval of the former component is contained within a chromosome, while
the interval of the latter extends over two chromosomes.

Observation 2. Let M be a component. Then M is internal iff I(M) is contained in one chromosome.

Observation 3. The set of internal components is independent of the specific concatenation πA . In other words, the set of internal
components remains unchanged with all the concatenations of A.

In [4] the term “component” is defined in a different manner. However, as we show below, the two definitions are
equivalent when the components are internal. Note that the terms “internal” and “external” correspond to the terms “in-
trachromosomal” and “interchromosomal” in [4]. To make a distinction, we refer to the term “component” defined in [4] as
“BMS-component”. We now define this term and prove the equivalence.

For a signed permutation π , we denote by P (π) the signed permutation obtained from π by adding the first element 0
and the last element n + 1. For example, for the permutation in Fig. 1:

P (πA2) = (0,1,−2,3,−6,7,−11,10,−9,−8,12,5,4,13)

We refer to P (π) as a padded signed permutation.
A BMS-component is an interval of P (π), from i to i + j or from −(i + j) to −i, where j > 0, whose set of (unsigned)

elements is {i, . . . , i + j}, and that is not the union of smaller such intervals. For example, P (πA2) contains five BMS-
components: (1,−2,3), (3, . . . ,13), (7, . . . ,12), (−11,10,−9), and (−9,−8). The interval (−11,10,−9,−8) is not a BMS-
component as it is the union of (−11,10,−9) and (−9,−8).

The overlap graph of a signed permutation was originally defined for a padded permutation [9]. The connected com-
ponents of this graph play a major role in the analysis of SBR. The analysis for SBR was revised in [3] and an alternative
definition was given for the components of the overlap graph, namely BMS-components. It is implied in [3] that there is
a bijective mapping between the set of BMS-components of P (πA) and the set of components in OV(P (πA)), the overlap
graph of P (πA). More specifically, I is a BMS-component of P (πA) iff I = I(M) for some component M in OV(P (πA)).
A BMS-component I is internal if I is contained in one of the chromosomes of A.

Observation 4. Let I ⊂ πA . Then I is an internal BMS-component iff I = I(M) for some internal component M.

Proof. Let A′ be a uni-chromosomal genome whose single chromosome equals P (πA), i.e., A′ = {P (πA)}. The implied target
genome is {(0,1, . . . ,n + 1)}. Following [9], H ′ = OV(P (πA)) ≡ OV(A′, P (πA)). Thus H = OV(A,πA) is a subgraph of H ′ ,
where the vertices in H ′ \ H correspond to element pairs (i, i + 1) that are not adjacent in B . (In the example of Fig. 1,
those will be the pairs (0,1), (4,5) and (12,13).) Recall that for every BMS-component I there exists a component M in

348 M. Ozery-Flato, R. Shamir / Journal of Discrete Algorithms 9 (2011) 344–357
Fig. 2. An example of a bad translocation that eliminates two leaves. (a) The cycle graph G(A3) ≡ G(A3, B3) where A3 = {(1,−9,4,−5,6,−7,8,−3),

(−2,10,−11,12)} and B3 = {(1,2), (3,4, . . . ,12)}). The four internal components are designated by M1, . . . , M4. (b) The cycle graph G(A3 · φ), where φ is
a prefix–suffix translocation cutting the two black edges pointed by the vertical arrows in (a). In A3 · φ only one internal component exists, namely M1.
The other internal components, M2, M3, and M4, were eliminated by φ.

H ′ for which I(M) = I . Clearly if I is internal then all the vertices in M are internal too, and M is necessarily an internal
component in H .

Observe that the vertices that are in H ′ \ H cannot be adjacent to internal vertices in H , since in G(A′) the corresponding
gray edges are adjacent to black edges bridging across chromosome ends. Therefore, if M is an internal component in H
then M is also a component of H ′ and hence I(M) is an internal BMS-component. �
2.3. The forest of internal components

In this section we present the forest of internal components, originally defined in [4]. Let M ′ and M ′′ be two internal
components. Then, as discussed in [4], I(M ′) and I(M ′′) are either disjoint, nested with different endpoints, or overlapping
on one element. We define a chain as a sequence of internal components (M1, . . . , Mt) in which I(M j) and I(M j+1) overlap
in exactly one gene for j = 1, . . . , t − 1. For example, in Fig. 1 let M ′ = {(9,10), (10,11)} and M ′′ = {(8,9)}. Then (M ′, M ′′)
is a chain, as I(M ′) and I(M ′′) overlap in one element, which is 9.

For a chain C = (M1, . . . , Mt) define its associated interval as I(C) = ⋃t
j=1 I(M j). A chain that cannot be extended to the

left or right is called maximal. The forest of internal components, denoted F (A), is defined by the following:

1. The vertices of F (A) are: (i) the non-trivial internal components and (ii) maximal chains that contain at least one
non-trivial component.

2. The children of a chain vertex are the non-trivial (internal) components it contains.
3. A chain vertex C is a child of the non-trivial internal component M with the smallest interval I(M) satisfying I(C) ⊂

I(M). If no such component exists then C is a root of its tree.

See Fig. 1(c) for an example. Observe that each tree in F (A) is contained within one chromosome. For example, the two
trees in Fig. 1(c) are contained in chromosome 1. We will refer to a component that is a leaf in F (A) as simply a leaf. For
example, there are two leaves in Fig. 1(c) corresponding to the intervals (1,2,3) and (−11,10,−9).

Note that if A = B then all the components are trivial and hence F (A) is empty. In addition, F (A) is empty if no non-
trivial internal component exists. We say that a non-trivial internal component M is eliminated by a translocation φ if after
φ is applied the vertices in M belong to external components. A translocation is called bad if �c = −1 (i.e. two cycles
are merged into one). The following observation describes how non-trivial internal components can be eliminated by bad
translocations.

Observation 5. (See [6,4].) A leaf M is eliminated by performing a translocation that cuts one black edge incident to a gray edge in M
and one black edge in another chromosome of A. This translocation is necessarily bad. In addition, all the ancestor components of M in
F (A) are eliminated as well.

An example of a translocation that eliminates two leaf components, with their ancestors, is shown in Fig. 2.

M. Ozery-Flato, R. Shamir / Journal of Discrete Algorithms 9 (2011) 344–357 349
2.4. The translocation distance

Let T (A) and L(A) denote the number of trees and leaves in F (A), respectively. Obviously T (A) � L(A). Define

f (A) =
⎧⎨
⎩

2 if T (A) = 1 and L(A) is even

1 if L(A) is odd

0 otherwise (T (A) �= 1 and L(A) is even)

Theorem 2. (See [6,4].2) The translocation distance between A and B is d(A) = n − N − c(A) + L(A) + f (A).

An optimal move, i.e., a move that is part of a solution to SRT, is called valid.

Lemma 3. (See [6,4].) �d = �(−c + L + f) � −1. A translocation φ is valid iff �d = −1.

A proper translocations is safe if it does not create new leaves. The analysis in [6,4] implies that valid translocations are
either: (i) bad, or (ii) proper and safe. Bad translocations are valid if �(L + f) = −2. As was demonstrated by Bergeron et
al. [4] a safe proper translocation may be invalid. However, if there are no leaves, which means that there are no non-trivial
internal components, then a safe proper translocation is necessarily valid.

2.5. Analogy to SBR

For the readers familiar with the theory of SBR we now point to the analogy with the SRT theory. The minimum
number of reversals needed to sort a signed permutation π (i.e., transform π into the identity permutation) depends on
the number of cycles in the cycle graph G(π), and on the “unoriented” components in OV(π) [8,9]. Unoriented components
with minimal intervals are called “hurdles”. The sorting of π requires the elimination of all hurdles by bad reversals, which
decrease the number of cycles by one. If there are no hurdles, then π can be sorted by proper reversals, which increase the
number of cycles by one. Thus there exists an analogy between the two distance formulas, of SBR and SRT. In particular, the
parameter L, which indicates the number of leaves, is analogous to the parameter h, which indicates the number of hurdles.

The elimination of all hurdle components can be done linear time [9,1], and is commonly performed at the beginning of
the sorting algorithm. Thus SBR is linearly reduced to a simpler variant, “SBR-no hurdles”. Most algorithms for SBR focus on
solving this reduced form of SBR.

In the following we show that SRT can be reduced to “SRT-no leaves” in a similar manner, by eliminating all leaves
in linear time. In addition, the algorithm we present in Section 4 for “SRT-no leaves” is an adaptation of an algorithm for
“SBR-no hurdles”. In [14] we show that two additional algorithms for “SBR-no hurdles” can be adapted to solve the “SRT-no
leaves”.

3. A linear reduction of SRT to SRTNL

A large part of the difficulty in analyzing the translocation distance (Theorem 2) is due to leaves: when there are no
leaves f (A) = L(A) = 0 and the distance formula is much simpler. Motivated by this observation, we define SRTNL (“SRT-
no leaves”) as a special case of SRT when there are no leaves (i.e. L(A) = T (A) = 0). In this section we present a generic
algorithm for solving SRT, using an algorithm for SRTNL. This algorithm, apart from two calls for solving an SRTNL instance,
can be implemented in linear time.

Let L(X) denote the number of leaves in chromosome X . Let NL(A) denote the number of chromosomes of A containing
at least one leaf. Equivalently, NL(A) is the number of chromosomes for which L(X) > 0. The sorting of genome A into B
requires the elimination of all leaves. The following lemmas describe how to eliminate leaves by valid (bad) translocations.

Lemma 4. Suppose NL(A) � 2. Then there exists a valid bad translocation φ satisfying:

(i) �L = −2, and
(ii) if L(A · φ) � 2 then NL(A · φ) � 2.

Proof. Assume NL(A) � 2. First, we prove that any bad translocation φ satisfying (i) and (ii) is necessarily valid. The parity of
L is the same in A and in A ·φ and hence � f = 0 (f = 1 if L is odd, and f = 0 otherwise). Therefore �d = �(−c + L + f) =
1 − 2 + 0 = −1 and φ is valid.

We shall now prove that there exists such a bad translocation. Choose X1, X2 ∈ A such that L(X1) + L(X2) is maximal.
Suppose L(X1) � L(X2).

2 The formulas in [4] and [6] are equivalent: a leaf component is equivalent to a “minimal subpermutation” (minSP in short); the parameter s in [6],
which denotes the number of minSPs, is equivalent to L; the term (o + 2i) in [6] is equivalent to f .

350 M. Ozery-Flato, R. Shamir / Journal of Discrete Algorithms 9 (2011) 344–357
Case 1. L(X1) � 2 and L(X2) � 2. Let φ be a (bad) prefix–prefix translocation that eliminates the second leaf from the left in
X1 and X2 (Observation 5). Then each of the new chromosomes in A · φ contains at least one leaf and hence NL(A · φ) � 2.

Case 2. L(X1) � 2 and L(X2) = 1. Let φ be a (bad) prefix–prefix translocation that eliminates the second leaf from the left
in X1 and the leaf in X2. Then at least one of the new chromosomes in A · φ contains exactly one leaf. If L(A · φ) � 2 then
there must be another chromosome in A · φ that contains at least one leaf and hence NL(A · φ) � 2.

Case 3. L(X1) = L(X2) = 1. Let φ be a (bad) translocation that eliminates the two leaves in X1 and X2. Clearly in A · φ every
chromosome contains at most one leaf. Hence, if L(A · φ) � 2 then NL(A · φ) � 2. �

The following lemma follows from the proof of Theorem 13 in [6], and is proven here for completion.

Lemma 5. Suppose NL(A) = 1, L(A) � 2, and f (A) > 0. Let φ be a (prefix–prefix) translocation that eliminates the second leaf from
the left in A. Then φ is valid. In addition, if L(A · φ) � 2 then NL(A · φ) � 2.

Proof. Clearly �(−c + L) = 1 − 1 = 0. If L(A · φ) = 1 then L(A) = 2 and T (A) = 1 and thus � f = −1 and φ is valid.
Suppose L(A · φ) � 2. Let X ′ be the chromosome containing all the leaves in A, and let X ′′ be the second chromosome

on which φ acts. Then in genome A · φ: L(X ′′) = 1 and L(X ′) > 0, thus NL(A · φ) � 2. In particular T (A · φ) > 1 and
L(A · φ) = L(A) − 1, so � f = −1 and φ is valid. �

Suppose there are several trees that are all located in one chromosome, i.e., NL(A) = 1, but T (A) > 1. To be able to
eliminate a pair of leaves by one (bad) translocation, we first need to perform a sequence of (valid) proper translocations
that “separates” the trees (and hence the leaves) into two different chromosomes. In the following we describe how to find
such a sequence. We say that a sequence of translocations sorts a component M , if after performing the sequence every
gray edge in M becomes an adjacency.

Lemma 6. There is a sequence of safe proper translocations that sorts all external components (internal components are unchanged).

Proof. For an interval of genes I = (i1, . . . , ik) let IN(I) = {i2, . . . , ik−1}. Let S = {i | i ∈ IN(I), where I is an interval corre-
sponding to a tree}. For example, in Fig. 1, S = {2,8,9,10,11}. Define A′ and B ′ as the genomes obtained from A and B
respectively after the deletion of the genes in S . Note that after a gene is deleted from a genome, its two neighbors become
adjacent. Thus any interval corresponding to a tree of A is replaced in A′ by a pair of genes forming an adjacency. Therefore
G(A′) contains no leaves. Thus there is a sequence of safe proper translocations that sorts A′ into B ′ (Theorem 2). This
sequence induces a sequence of safe proper translocations on A that sorts all the external components in G(A). �

We call a translocation φ separating if NL(A) = 1 and NL(A · φ) = 2. The following lemma shows how to find a sequence
of valid proper translocations, whose last translocation is separating.

Lemma 7. Suppose NL(A) = 1 and T (A) > 1. Let S = (φ1, . . . , φk) be a sequence of safe proper translocations that sorts all the
external components in G(A). Then S contains a separating translocation φl , l ∈ {1, . . . ,k}. Moreover, Sl = (φ1, . . . , φl) is a sequence
of valid translocations.

Proof. Apply the translocations in S by their order. Let A0 = A and let Ai be the genome obtained after applying (φ1, . . . , φi)

to A. Suppose that S does not contain a separating translocation. Thus, by our assumption NL(Ai) = 1 for i = 1, . . . ,k.
Observe that a chromosome that contains two trees necessarily contains the endpoint of an external edge. Thus T (Ak) = 1,
since in Ak there are no external edges and all the leaves belong to one chromosome. Since T (A) > 1, there exists φt ∈ S
such that T (At−1) > 1 and T (At) = 1. Now, φt is a safe proper translocation and hence does not eliminate any internal
component, thus At−1 must contain two trees in two different chromosomes. Therefore NL(At−1) > 1, a contradiction.

Thus there exists i for which NL(Ai) > 1. Let l be the first index for which NL(Al) > 1. Then φl is a separating translo-
cation. As Sl contains only safe proper translocations L(Al) = L(A) and thus f (Al) = f (A). Hence d(Al) − d(A) = l and thus
every translocation in Sl is valid. �

Lemmas 4–7 motivate Algorithm 1 for SRT. This algorithm focuses on the efficient and optimal elimination of all leaf
components. If all the leaves belong to one chromosome, then we either use Lemma 5 or Lemma 7 to separate the leaves
into two chromosomes. Then we use Lemma 4 to eliminate pairs of leaves. At the end, either all leaves have been eliminated,
or we are left with a single leaf, which is eliminated by one (valid) bad translocation.

Lemma 8. Algorithm 1, excluding the two calls to a SRTNL algorithm, can be implemented in linear time.

M. Ozery-Flato, R. Shamir / Journal of Discrete Algorithms 9 (2011) 344–357 351
Algorithm 1 An algorithm for solving SRT using an algorithm for SRTNL.
1: if NL = 1 and L � 2 then
2: if f > 0 then
3: Eliminate the second leaf from the left by a prefix–prefix translocation /*Lemma 5*/
4: else
5: Compute a sequence S of safe proper translocations that sorts all external components /*using an algorithm for SRTNL, Lemma 6*/
6: Iteratively perform the translocations in S until NL > 1 /*Lemma 7*/
7: end if
8: end if
9: Let Q 1 be the list of chromosomes containing exactly one leaf

10: Let Q 2 be the list of chromosomes containing at least two leaves
11: while L > 0 do
12: if L = 1 then
13: Eliminate the single leaf by a prefix–prefix translocation
14: else
15: for i = 1,2 do
16: if Q 2 �= ∅ then
17: Xi ← an element from Q 2. Remove Xi from Q 2

18: li ← the second leaf from the left in chromosome Xi

19: else
20: Xi ← an element from Q 1. Remove Xi from Q 1

21: li ← the single leaf in Xi

22: end if
23: end for
24: Eliminate l1 and l2 by a prefix–prefix translocation /*Lemma 4*/
25: for i = 1,2 do
26: if L(Xi) � 2 then
27: add Xi to Q 2

28: else if L(Xi) = 1 then
29: add Xi to Q 1

30: end if
31: end for
32: end if
33: end while /*Invariant: NL � 2 or L = 1 */
34: Solve SRTNL on A

Proof. The computation of all the parameters can be done in linear time, in a similar manner to the computation of the
translocation distance [4].

Steps 5 and 6 are implemented by calling a procedure for SRTNL. However, we need to stop this procedure when a
separating translocation is applied. We can locate this separating procedure in linear time by acting as follows. Suppose
that NL = 1, T > 1 and S = (φ1, . . . , φk) is a sequence of safe proper translocations that sorts all the external components.
By Lemma 7 there exists a separating translocation φl in S . Let I be the minimum interval of genes that contains the
intervals of all the leaves. We say that a translocation φ cuts I if one of the black edges it cuts is contained in I . Note that
since I is contained in a single chromosome, a translocation cuts at most one black edge in I . Clearly φl cuts I . On the other
hand, the first translocation that cuts I is necessarily separating. For every translocation φi in S we can test in O (1) time
whether it cuts I .

We implement Steps 11–33 in linear time, as follows. For each chromosome we maintain its genes and the leaves it
contains in two ordered linked lists. We use only prefix–prefix (bad) translocations that do not change the signs of the
translocated genes. Thus the update of the genes and leaves lists of the chromosomes after a translocation is done in
O (1). �

Lemma 8 immediately implies:

Theorem 9. SRT is linearly reducible to SRTNL.

4. An algorithm for SRTNL

In this section we present an algorithm for SRTNL. We first describe how the overlap graph is changed after performing
a chromosome flip or a proper translocation defined by an external vertex.

As was demonstrated by Hannenhalli and Pevzner [7], a reversal on πA simulates a translocation on A:

(. . . , X1, X2, . . . , Y1, Y2, . . .) ⇒ (. . . , X1,−Y1, . . . ,−X2, Y2, . . .).

The type of translocation depends on the relative orientation of X and Y in πA (and not on their order): if the orientation is
the same, then the translocation is prefix–suffix, otherwise it is prefix–prefix. The segment between X2 and Y1 may contain
additional chromosomes that are flipped and thus unaffected.

352 M. Ozery-Flato, R. Shamir / Journal of Discrete Algorithms 9 (2011) 344–357
4.1. Updating OVCH for chromosome flips and proper translocations

Suppose H1 = OVCH(A,π1) and H2 = OVCH(A,π2), where π1 and π2 are two different concatenations and orientations
of the chromosomes in A. In this case we refer to H1 and H2 as equivalent.

Let H = OVCH(A,πA). Let IN(H) denote the set of vertices that are in non-trivial internal components. Thus two equiva-
lent graphs, H1 and H2, satisfy IN(H1) = IN(H2) (Observation 3).

Let v be any vertex in H . Denote by CH(v) ≡ CH(v, H) the set of chromosomes that are neighbors of v in H . Hence if
v is external then |CH(v)| = 2, otherwise CH(v) = ∅ (compare Fig. 1(b)). For a chromosome X , let φ(X) denote a flip of
chromosome X in πA . Let H · φ(X) = OVCH(A,πA · φ(X)). Hence, in particular H · φ(X) and H are equivalent.

Lemma 10. (See [14].) H · φ(X) is obtained from H by complementing the subgraph induced by the set {u: X ∈ CH(u)} and flipping
the orientation of every vertex in it.

Let v be an external vertex in H . Denote by φ(v) the proper translocation that the corresponding gray edge defines
on A (recall Observation 1). Two external vertices v1 and v2 in H are equivalent if they define the same translocation, i.e.
φ(v1) ≡ φ(v2).

A vertex in the overlap graph is oriented if its corresponding edge connects two genes with different signs in πA , other-
wise it is unoriented. If v is an oriented external vertex then φ(v) can be mimicked by a reversal, φ̂(v), on πA .

For an external vertex v we define H ·φ(v) in the following way. If v is oriented then H ·φ(v) = OVCH(A ·φ(v),πA · φ̂(v)).
Otherwise, suppose CH(v) = {X, Y } and that Y appears after X in πA . Then v is an oriented external vertex in H ′ = H ·φ(X)

and thus we define H · φ(v) = H ′ · φ(v).
Denote by N(v) ≡ N(v, H) the set of vertices that are neighbors of v , including v itself (but not including chromosome

neighbors). Given two sets S1 and S2 define S1 ⊕ S2 = (S1 ∪ S2) \ (S1 ∩ S2). Finally, two chromosomes in OVCH(A,πA) are
called consecutive if they are consecutive in πA .

Lemma 11. (See [14].) Let v be an oriented external vertex in H and suppose the chromosomes in CH(v) are consecutive. Then H ·φ(v)

is obtained from H by the following operations:

(i) Complement the subgraph induced by N(v) and flip the orientation of every vertex in N(v).
(ii) For every vertex u ∈ N(v) update the edges between u and CH(u) ∪ CH(v) such that CH(u) = CH(u) ⊕ CH(v). In particular, the

external/internal state of a vertex u ∈ N(v) is flipped iff u is internal or CH(u) = CH(v).

Lemmas 10 and 11 describe the change in OVCH(A,πA) after performing operations that can be mapped to reversals
on πA . Therefore, the described change in OVCH(A,πA) is similar to the change in OV(π) after performing a reversal [9,
Observation 4.1].

4.2. The main theorem and algorithm

We now describe the main theorem and algorithm. Our algorithm is formally very similar to the algorithm for SBR
presented in [15]. Instead of performing reversals on oriented edges in [15], we perform translocations on external edges.
Despite of the great similarity between the algorithms our validity proof is completely new. We analyze an overlap graph
with chromosomes of a multi-chromosomal genome, while [15] analyze the overlap graph of a uni-chromosomal genome.
Like [15], we perform operations defined by oriented vertices (i.e. translocations). However, in our case these vertices must
also be external. If an external vertex is unoriented, we can turn it into an oriented vertex by a flip of a chromosome. Hence,
we consider two types of operations in our analysis.

A sequence of vertices S = (v1, . . . , vk) from H is legal if v j is external in H · φ(v1) · · ·φ(v j−1) for j = 1, . . . ,k. For a
legal sequence S define φ(S) = φ(v1) · · ·φ(vk). A legal sequence S is total if H · φ(S) contains only trivial components. For
an overlap graph with chromosomes H1, let EXT(H1) denote the set of vertices that are in external components. If S is a
maximal legal sequence of vertices in H then EXT(H · φ(S)) = ∅. If in addition S is not total then IN(H · φ(S)) �= ∅.

Theorem 12. Let S = (v1, . . . , vk) be a maximal legal but not total sequence of vertices in H. Let IN = IN(H · φ(S)). Let vl be the
first vertex in S satisfying IN(H · φ(v1, . . . , vl)) = IN, i.e. φ(vl) is the last unsafe translocation in φ(S). Let S1 = (v1, . . . , vl−1) and
S2 = (vl, . . . , vk). Then every maximal sequence of vertices S ′ = (w1, . . . , wm) in IN that satisfies

(i) (S1, S ′) is legal, and
(ii) vl is not an adjacency in H · φ(S1, S ′) also satisfies:

(iii) S ′ is not empty, and
(iv) (S1, S ′, S2) is a maximal legal sequence.

Moreover, all the translocations in φ(S2) are safe.

M. Ozery-Flato, R. Shamir / Journal of Discrete Algorithms 9 (2011) 344–357 353
Proof. Let v = vl , H0 = H · φ(S1) and IN0 = EXT(H0) ∩ IN. Then IN0 �= ∅ and none of the vertices in IN0 is equivalent to
v in H0 (otherwise it would be an adjacency in H · φ(S) and hence not in IN). Hence S ′ is not empty. Let A0 = A · φ(S1)

and CH(v) = {X, Y }. We choose π0 to be a concatenation of the chromosomes in A0 in which X and Y are the first
two chromosomes. We can assume w.l.o.g. that H = OVCH(A,π0), hence H0 = OVCH(A0,π0). For j = 1, . . . ,m let H j =
H0 · φ(w1, . . . , w j). Let IN j = EXT(H j) ∩ IN. Then for j = 1, . . . ,m: (i) w j ∈ IN j−1 and (ii) w j is not equivalent to v in H j−1.
Let EXT = EXT(H0 · φ(v)). The following conditions hold for H j when j = 0 (see Fig. 3(a)):

(1) The subgraphs of H j · φ(v) and H0 · φ(v) that are induced by EXT are equivalent.
(2) Every w ∈ IN j satisfies: CH(w) = CH(v) = {X, Y }.
(3) If v is oriented then N(v) ∩ IN = IN j .
(4) All the possible edges exist between N(v) ∩ EXT and IN j .
(5) There are no edges between IN \ IN j and vertices outside IN.
(6) There are no edges between EXT \ N(v) and vertices outside EXT .

We shall prove below that in Hm v is external and that all the above conditions are satisfied. The first condition en-
sures that (S1, S ′, S2) is legal. The rest of the conditions ensure that Hm · φ(v) satisfies: (i) there are no external vertices
in IN and (ii) there are no edges between EXT and vertices outside EXT . Hence (S1, S ′, S2) is maximal and every translo-
cation in φ(vl+1, . . . , vk) is safe. φ(vl) is safe in Hm since S ′ is maximal. Therefore, all the translocations in φ(S2) are
safe.

Assume that v is external in H j and that all the above conditions hold for a certain j. Since these conditions are true
for every graph that is equivalent to H j we can assume that v is oriented. We now prove, using induction on j, that these
conditions are satisfied for every Hi , i ∈ {1, . . . ,m}, in which v is external, and that v is external in Hm .

Case 1. w j+1 is oriented in H j . Let H j+1 = H j · φ(w j+1) (see Fig. 3(b)). Then IN j+1 = N(v, H j) ⊕ N(w j+1, H j). IN j+1 �= ∅,
otherwise v is an isolated internal vertex in H j+1 and hence equivalent to w j+1 in H j . Hence m � j + 2.

Case 1(a). w j+2 is oriented in H j+1. Let H j+2 = H j+1 · φ(w j+2) (see Fig. 3(c)). Clearly, v is external in H j+2. Let M =
N(v, H j)∩EXT . Then N(w j+2, H j+1)∩EXT = N(w j+1, H j)∩EXT = M . Hence the subgraphs of H j+2 and H j that are induced
by M are identical and the first condition is satisfied in H j+2.

Case 1(b). w j+2 is unoriented in H j+1. Let H ′
j+1 = H j+1 · φ(X) (H ′

j+1 and H j+1 are equivalent) (see Fig. 3(d)). Hence w j+2

is oriented in H ′
j+1. Note that v is an internal vertex in H ′

j . Let M ′ = N(w j+1, H ′
j+1) ∩ EXT . Let H j+2 = H ′

j+1 · φ(w j+2) (see
Fig. 3(e)). v is an oriented external vertex in H j+2 and N(v, H j+2) ∩ EXT = M ′ . Therefore, the two subgraphs of H j+2 · φ(v)

(see Fig. 3(f)) and H ′
j+1 (see Fig. 3(d)) that are induced by EXT are identical. The subgraphs of H j+1 and H j · φ(v) that are

induced by EXT are also identical. Hence, the first condition is satisfied.

Looking at Figs. 3(c) and 3(e) it is easy to verify that the rest of the conditions are also satisfied for H j+2.

Case 2. w j+1 is unoriented in H j . We define the three subsets of vertices M1, M2, M3 ⊂ EXT in H j as follows:

(1) M1 is the set of neighbors of w j+1 (equivalently, v) that are either internal or external but does not overlap chromo-
some X .

(2) M2 is the set of neighbors of w j+1 (equivalently, v) that overlap chromosome X . Hence M1 ∪ M2 = N(v, H j) ∩ EXT .
(3) M3 is the set of vertices that overlap chromosome X but are not neighbors of w j+1 (equivalently, v).

For an illustration of H j see Fig. 3(g). Let H ′
j = H j · φ(X) (see Fig. 3(h)). In H ′

j : w j+1 is an oriented external vertex and is
not a neighbor of v . Let H j+1 = H ′

j · φ(w j+1) (see Fig. 3(i)). Obviously, v remains intact in H j+1. Let H ′
j+1 = H j+1 · φ(X)

(see Fig. 3(j)). Then, the subgraphs of H ′
j+1 · φ(v) (see Fig. 3(k)) and H j · φ(v) that are induced by M1, M2 and M3 are

equivalent (compare the subgraph induced by EXT in H j in Fig. 3(g) with the subgraph induced by EXT in H ′
j+1 ·φ(v) ·φ(X)

in Fig. 3(l)). Hence the first condition is satisfied. Looking at Fig. 3(i), it is easy to verify that conditions (2)–(6) hold
for H j+1. �

Algorithm 2 builds a sequence of gray edges in G(A), (S1, S2), that corresponds to a total legal sequence of vertices
from H . The sequence (S1, S2) is built by a repeated application of Theorem 12. It greedily removes external edges in
G(A) from an allowed subset and performs the corresponding translocations (step 2(a)). When the allowed subset con-
tains only internal gray edges, the algorithm repeats the last translocations in a reverse order (thereby canceling them)
until another vertex in the allowed subset becomes external (step 2(b)). Fig. 4 describes an example of a run of the
algorithm. Every translocation in the algorithm is applied at most twice and so the algorithm performs at most 2n translo-
cations.

354 M. Ozery-Flato, R. Shamir / Journal of Discrete Algorithms 9 (2011) 344–357
Fig. 3. Illustrations for the proof of Theorem 12.

5. An O (n3/2
√

log(n)) time implementation of the algorithm

Algorithm 2 can be implemented in O (n2) time in a relatively simple manner. We provide below an O (n3/2
√

log(n))

algorithm. The implementation follows closely the ideas of [10] and [15].

M. Ozery-Flato, R. Shamir / Journal of Discrete Algorithms 9 (2011) 344–357 355
Algorithm 2 An algorithm for solving SRTNL.
1: Let V be the set of gray edges in G(A) that are in non-trivial components
2: S1 = S2 = ∅
3: Φ = ∅
4: while V �= ∅ do
5: while there exists an external gray edge v ∈ V in G(A) do
6: Remove v from V
7: if v is not equivalent to the first element in S2 then
8: Append v to S1

9: Append φ(v) to Φ

10: A ← A · φ(v)

11: end if
12: end while
13: if V = ∅ then
14: return φ(S1, S2)

15: end if
16: while all the gray edges in V are internal in G(A) do
17: Let v be the last gray edge in S1. Remove v from S1

18: Prepend v to S2

19: Let φ be the last translocation in Φ . Remove φ from Φ

20: A ← A · φ
21: end while
22: end while

Genome A S1 S2 V

(−8,−2,7,3), (1,6,5,−4) ∅ ∅ 1,2,4,5,6,7

(−8,−2,−1), (−3,−7,6,5,−4) 1 ∅ 2,4,5,6,7

(−3,−2,−1), (−8,−7,6,5,−4) 1, 2 ∅ 4, 5, 6, 7

(−8,−2,−1), (−3,−7,6,5,−4) 1 2 4, 5, 6, 7

(−8,−2,−1), (−3,−7,6,5,−4) 1 2 4, 5, 6

(−8,−2,7,3), (1,6,5,−4) ∅ 1, 2 4, 5, 6

(1,6,7,3), (−8,−2,5,−4) 6 1, 2 4, 5

(−8,−2,5,6,7,3), (1,−4) 6, 5 1, 2 4

(−8,−2,5,6,7,3), (1,−4) 6, 5 1, 2 ∅
(−8,−2,−1), (−3,−7,−6,−5,−4)

(−3,−2,−1), (−8,−7,−6,−5,−4)

Fig. 4. An example for a run of the algorithm on genomes A = {(−8,−2,7,3), (1,6,5,−4)} and B = {(1,2,3), (4, . . . ,8)}. A gray edge (i, i + 1) (vertex
of H) is represented by i. The underlined segments denote a translocation the algorithm chose. The algorithm ends when V = ∅. The top 9 lines describe
the steps of the algorithm. The two bottom lines show the application of φ(S2) = φ(1,2) on the final genome produced by the algorithm, producing B .

We identify a gray edge (i, i +1) by i and refer to (i +1) as the remote end of i. The data structure we use for maintaining
the genome A is as follows:

(1) A doubly linked list of O (
√

n
log(n)

) blocks. We partition πA into continuous blocks such that the size of every block is

at least 1
2

√
n log(n) and at most 2

√
n log(n).

(2) A balanced search tree for every block. The tree contains the edges in the block ordered by the positions of their remote
ends. We use balanced trees that support split and concatenate operations in logarithmic time, such as red–black trees
or 2–4 trees. We use T [v] to denote the subtree rooted at v and containing all its descendants.

(3) An n-array of block pointers. The ith entry in the array points to the block containing i.

We add the following fields to the above data structure:

(1) For each edge we keep an external-bit. If the external-bit is on then the edge is external, otherwise it is internal.
(2) For each block we keep the following fields: (i) a counter of external edges in V , (ii) a counter of chromosomes’ left

tails, and (iii) a reverse-flag. If the reverse-flag of a block is on then the order and signs of the elements in the block
are reversed.

(3) For every subtree T [v] of each block’s search tree we keep the following fields in its root v: (i) counters of external
and internal edges in V , (ii) a direction-flip-flag, and (iii) an external-flip-flag. If the external-flip-flag of a vertex v is on
then in T [v] the external-bits of all the elements are flipped and the counters of internal and external elements from
V exchange their values. If the direction-flip-flag of a vertex v is on then in T [v] the order of the elements is reversed.

356 M. Ozery-Flato, R. Shamir / Journal of Discrete Algorithms 9 (2011) 344–357
Table 1
The subtrees for which the external-flip-flag is flipped as a function of translocation type and block type.

Block X1 X2 Y1 Y2

Prefix–prefix X2, Y2 X1, Y1 X2, Y2 X1, Y1

Prefix–suffix X2, Y1 X1, Y2 X1, Y2 X2, Y1

We can clear the direction-flip-flag of a node by reversing the order of its children and flipping the direction-flip-flag in
each of them. We can clear the external-flip-flag in a node by exchanging the values of the counters of external and internal
edges in V , flipping the external-flip-flag in each of its children and flipping the external-bit of the element residing at the
node. One can view this procedure as “pushing down” the flags. An direction-flip-flag and an external-flip-flag that are on
are “pushed down” whenever T [v] is searched.

We implement the algorithm using the above data structures. A search for an external edge in V is done as follows. We
traverse the list of blocks until we reach a block that contains external edges from V . We then search the tree of the block
for an external edge i. We locate element i + 1 (the remote end of edge i) using the n-array and a search of its block.

Let φ be a translocation on A operating on the chromosomes X = (X1, X2) and Y = (Y1, Y2). Then φ is performed in
O (

√
n log(n)) time as follows:

(1) Split at most six blocks so that each of the four segments X1, X2, Y1 and Y2 corresponds to a union of blocks. If φ is a
prefix–prefix translocation exchange the blocks of X1 and Y1. Otherwise, reverse the order and flip the reverse-flags of
the blocks of X2 and Y1 and then exchange the blocks of X2 and Y1.

(2) We now have to modify the trees of each block to reflect the order and direction changes. This is done as follows.
Traverse all the blocks and for each block:
(a) Let T be the balanced search tree of the block. If φ is a translocation on an edge i in V and i is contained in the

block: decrease by 1 the counters of external edges in V of the block and of every node in T that contains i in its
subtree.

(b) Split T into at most seven subtrees such that each of the segments X1, X2, Y1 and Y2 has a corresponding subtree.
(c) If the block corresponds to a segment of X1, X2, Y1 and Y2 flip the external-flip-flag at the roots of two subtrees

according to Table 1.
(d) If φ is a prefix–prefix translocation, exchange the subtrees of X1 and Y1. Otherwise, exchange the subtrees of X2

and Y1 and flip the direction-flip-flags of both.
(e) Concatenate the seven subtrees into T .

(3) If necessary, concatenate small blocks and split large blocks such that the size of each block is at least 1
2

√
n log(n) and

at most 2
√

n log(n).

Theorem 13. SRTNL can be solved in O (n3/2
√

log(n)).

Acknowledgements

This study was supported in part by the Raymond and Beverly Sackler chair in Bioinformatics and by the Israel Science
Foundation (grant No. 802/08).

References

[1] D.A. Bader, B.M.E. Moret, M. Yan, A linear-time algorithm for computing inversion distance between signed permutations with an experimental study,
Journal of Computational Biology 8 (5) (2001) 483–491.

[2] A. Bergeron, A very elementary presentation of the Hannenhalli–Pevzner theory, Discrete Applied Mathematics 146 (2) (2005) 134–145.
[3] A. Bergeron, J. Mixtacki, J. Stoye, Reversal distance without hurdles and fortresses, in: Proceedings of the 15th Annual Symposium on Combinatorial

Pattern Matching (CPM), in: LNCS, vol. 3109, Springer, 2004, pp. 388–399.
[4] A. Bergeron, J. Mixtacki, J. Stoye, On sorting by translocations, Journal of Computational Biology 13 (2) (2006) 567–578.
[5] P. Berman, S. Hannenhalli, Fast sorting by reversal, in: Proceedings of the 7th Annual Symposium Combinatorial Pattern Matching (CPM), in: LNCS,

vol. 1075, Springer, 1996, pp. 168–185.
[6] S. Hannenhalli, Polynomial algorithm for computing translocation distance between genomes, Discrete Applied Mathematics 71 (1996) 137–151.
[7] S. Hannenhalli, P. Pevzner, Transforming men into mice (polynomial algorithm for genomic distance problems), in: Proceedings of the 36th Annual

Symposium on Foundations of Computer Science (FOCS), IEEE Computer Society Press, 1995, pp. 581–592.
[8] S. Hannenhalli, P. Pevzner, Transforming cabbage into turnip: Polynomial algorithm for sorting signed permutations by reversals, Journal of the ACM 46

(1999) 1–27.
[9] H. Kaplan, R. Shamir, R.E. Tarjan, Faster and simpler algorithm for sorting signed permutations by reversals, SIAM Journal of Computing 29 (3) (2000)

880–892.
[10] H. Kaplan, E. Verbin, Sorting signed permutations by reversals, revisited, Journal of Computer and System Sciences 70 (3) (2005) 321–341.
[11] J.D. Kececioglu, R. Ravi, Of mice and men: Algorithms for evolutionary distances between genomes with translocation, in: Proceedings of the 6th

Annual ACM–SIAM Symposium on Discrete Algorithms (SODA), ACM Press, 1995, pp. 604–613.
[12] G. Li, X. Qi, X. Wang, B. Zhu, A linear-time algorithm for computing translocation distance between signed genomes, in: Proceedings of the 15th Annual

Symposium on Combinatorial Pattern Matching (CPM), in: LNCS, vol. 3109, Springer, 2004, pp. 323–332.

M. Ozery-Flato, R. Shamir / Journal of Discrete Algorithms 9 (2011) 344–357 357
[13] M. Ozery-Flato, R. Shamir, An O (n3/2
√

log(n)) algorithm for sorting by reciprocal translocations, in: Proceedings of the 17th Annual Symposium on
Combinatorial Pattern Matching (CPM), in: LNCS, vol. 4009, Springer, 2006.

[14] M. Ozery-Flato, R. Shamir, Sorting by translocations via reversals theory, Journal of Computational Biology 14 (4) (2007) 408–422.
[15] E. Tannier, A. Bergeron, M. Sagot, Advances on sorting by reversals, Discrete Applied Mathematics 155 (6–7) 881–888.
[16] L. Wang, D. Zhu, X. Liu, S. Ma, An o(n2) algorithm for signed translocation, Journal of Computer and System Sciences 70 (3) (2005) 284–299.

	An O(n3/2√log(n)) algorithm for sorting by reciprocal translocations
	Introduction
	Preliminaries
	The cycle graph
	The overlap graph with chromosomes
	The forest of internal components
	The translocation distance
	Analogy to SBR

	A linear reduction of SRT to SRTNL
	An algorithm for SRTNL
	Updating OVCH for chromosome ﬂips and proper translocations
	The main theorem and algorithm

	An O(n3/2√log(n)) time implementation of the algorithm
	Acknowledgements
	References

